Идет загрузка..

Идет загрузка...
Корзина Каталог продукции
Позвонить Бесплатная консультация
Корзина Корзина пуста
ООО «Приборы контроля и Привод»
(ООО «ОВЕН-ПЕРМЬ»)
Эксклюзивный поставщик контрольно-измерительных приборов,
приборов защиты электродвигателей, датчиков и приводов.
Адрес: г. Пермь
ул. Луначарского д. 23
Наш телефон:
+7 (342) 270-02-27
Позвонить +7 (342) 270-02-27 Нажмите, чтобы позвонить на многоканальный телефон

Измерительное оборудование НПП ПРОМА

Приборы для измерения давления. Приборы для измерения температуры. Горелки газовые блочного типа. Форсунки. Пилотные горелки. Для безопасной работы установок работающих на сжигании газообразного, жидкого или твердого топлива основным параметром безопасности является контроль наличия и погасания пламени. Автоматика управления котлами, горелками, котлоагрегатами, теплогенераторами, печами. Устройства автоматизации. Котельное оборудование. Оборудование для узлов учета, датчики давления.

Контрольно-измерительные приборы ОВЕН

Компания ОВЕН предлагает самый широкий среди российских производителей ассортимент выпускаемой продукции. Он включает в себя более 80 наименований приборов, которые могут использоваться для построения систем автоматизации любого уровня: - Программируемые логические контроллеры (ПЛК); модули ввода/вывода; операторские панели; преобразователи интерфейса. - Общепромышленные регуляторы, регуляторы уровня, специализированные контроллеры, таймеры, счетчики, блоки питания. - Датчики: температуры, давления, уровня. Спектр отраслей промышленности, где работают приборы ОВЕН, очень широк и включает в себя химические и нефтехимические производства, металлургические и деревообрабатывающие предприятия, пищевую и упаковочную отрасли, энергетику, жилищно-коммунальное хозяйство и многие другие.

Приборы Термодат, Мерадат

Приборы для измерения и регулирования температуры, влажности, вакуума под маркой ТЕРМОДАТ и МЕРАДАТ. Модельный ряд приборов охватывает как простейшие одноканальные измерители, так и сложные многоканальные регуляторы с большим графическим дисплеем.

Клапаны

Широкий спектр клапанов различной конфигурации и назначения.

Клапаны электромагнитные соленоидные

Катушки для клапанов

Реле времени для клапанов

Коннекторы

Подробная информация на нашем русскоязычном сайте - http://пкип.рф/catalog/

Манометры и приборы РОСМА

ЗАО «Росма» на сегодняшний день является одним из крупнейших отечественных производителей контрольно-измерительных приборов, прочно входя в пятерку лидеров рынка в данной области. Одни из самых популярных приборов это - Манометры, Термометры, Термоманометры, Разделители сред, Клапаны электромагнитные (соленоидные), Датчики и реле давления, Преобразователи давления, Датчики уровня.

Приборы защиты электродвигателей и других электроустановок

Предназначены для предотвращения выхода из строя электродвигателей и агрегатов на их основе при возникновении недопустимых режимов работы, обусловленных различными эксплуатационными факторами: технологическими перегрузками; поломками и заклиниванием механизмов; холостом ходе; асимметрией питающей сети или неисправностью коммутационной аппаратуры. Обеспечивают защитное отключение электродвигателя при возникновении недопустимых (аварийных) режимов работы: перегрузке по току; недогрузке по току; неполнофазном режиме работы; превышении допустимого дисбаланса токов. Уникальным свойством приборов является наличие функции мониторинга – непрерывного наблюдения за работой электродвигателей, регистрации режимов и событий, накопления статистических данных о работе электродвигателей и агрегатов на их основе, защиты электродвигателей.

Автоматизация тепловых пунктов

Внедрение комплексной автоматизации теплового пункта предполагает автоматизацию всех систем с целью создания оптимальных эксплуатационных режимов при одновременном поддержании требуемых температур воздуха в отапливаемых зданиях и получения максимально возможной экономии энергоресурсов.

Преимущества автоматизированного теплового пункта

  • Сокращение общей длина трубопроводов тепловой сети
  • Капиталовложения в тепловые сети, а также расходы на строительные и теплоизоляционные материалы снижаются на 20—25%.
  • Расход электроэнергии на перекачку теплоносителя снижается на 20- 40%.
  • Экономия тепловой энергии составляет около 20-30 %.
  • За счет автоматизации регулирования отпуска тепла конкретному абоненту (зданию) экономится до 15% тепла на отопление.
  • Потери тепла при транспорте горячей воды снижаются в два раза.
  • Значительно сокращается аварийность сетей, особенно за счет исключения из теплосети трубопроводов горячего водоснабжения.
  • Так как автоматизированные тепловые пункты работают "на замке", значительно сокращается потребность в квалифицированном персонале.
  • Автоматически поддерживаются комфортные условия проживания за счет контроля параметров теплоносителей: температуры и давления сетевой воды, воды системы отопления и водопроводной воды; температуры воздуха в отапливаемых помещениях (в контрольных точках) и наружного воздуха.
  • Оплата потребленного каждым зданием тепла осуществляется по фактически измеренному расходу за счет использования приборов учета.
  • Появляется возможность существенно снизить затраты на внутридомовые системы отопления за счет перехода на трубы меньшего диаметра, применение неметаллических материалов.

Автоматика АГАВА для автоматизации тепловых пунктов [жилых зданий] обеспечивает:

  1. Автоматическое регулирование подачи теплоты в систему отопления и вентиляции по температурному графику (в зависимости от температуры наружного воздуха) с возможностью суточной коррекции графика (снижения температуры отопления в ночное время) и коррекцией для выходных и праздничных дней. Возможность принудительной смены режимов отопления по сигналу с дискретного входа. Ускоренный прогрев здания после энергосберегающего режима. Регулирование режима теплопотребления с учетом аккумулирующей способности здания и его ориентации по сторонам света. Возможность ручного регулирования.
  2. Автоматическое поддержание температуры контура горячего водоснабжения в соответствии с заданной уставкой с возможностью суточной коррекции. Возможность ручного управления.
  3. Управление циркуляционными насосами с защитой от сухого хода. Контроль наличия потока в трубопроводе. Переключение между насосами с заданным периодом для равномерной наработки.
  4. Управление подпиточным насосом для автоматического поддержания давления в системе отопления. Автоматика производит постоянное измерение давления в системе отопления, и в случае понижения давления ниже заданной уставки производит включение насоса подпитки. Возможность ручного управления подпиткой.
  5. Автоматическое поддержание температуры обратной воды. Отработка графика температуры обратной воды в зависимости от температуры наружного воздуха или температуры прямой воды (защита от завышения и занижения температуры обратной воды).
  6. Сигнализацию об аварийных и нештатных ситуациях.
  7. Хранение в памяти контроллера нескольких вариантов настройки под разные режимы работы.
  8. Ведение журнала действий персонала, архива технологических параметров.
  9. Передачу технологических параметров теплопункта в системы диспетчеризации по проводным и беспроводным каналам связи.
  10. Встроенный электронный регистратор.
  11. "Черный ящик" - детальный архив событий, предшествующих возникновению аварийной ситуации.

Экономическая эффективность автоматизации теплового пункта. Основные факторы экономии.

  • Снижение температуры воздуха в помещениях в часы отсутствия там людей – ночное время и выходные дни (для административных и производственных зданий). Это, примерно, 10 – 30 % экономии.
  • Снятие вынужденных избыточных расходов тепла в переходные, межсезонные периоды (как для жилья, так и для административных или производственных объектов отопления). Применение регулирования температуры СО на АТП позволяет сэкономить от 30 до 40 % в эти периоды. С учётом кратковременности данных периодов доля экономии в годовом теплопотреблении составляет порядка 2 – 6 %.
  • Снятие влияния на потери тепла инерции ТС – данный фактор наиболее эффективен при подключении ТП к крупным ТС, например, сетям от ТЭЦ (как для объектов ЖКХ, так и для административно – промышленных объектов). Экономию по данному фактору можно оценить только ориентировочно – порядка 3 – 5 % от общего объёма теплопотребления.
  • Экономический эффект за счёт применения графика качественного регулирования и поддержания постоянства расхода (постоянства перепада давления) в СО (как для жилых, так и для административных и производственных объектов). Применение данного фактора позволяет экономить около 4 % годового теплопотребления.
  • Учёт при управлении температурой отопления тепловых тепловыделений (для жилья). Применение специальных алгоритмов для жилых зданий может позволить сэкономить до 7 % общего теплопотребления для этих зданий. Реализовать данный график возможно только на индивидуальном АТП.
  • Возможность нормированного снижения нагрузки на отопление в часы максимальной нагрузки на горячее водоснабжение (для жилья). Это позволяет дополнительно добиться 1 – 3 % экономии.
  • Коррекция температурного графика по фактической производительности приборов отопления и с учётом мероприятий по энергосбережению архитектурно – строительного характера (как для жилья, так и для административно – производственных объектов). Эффект экономии от автоматизации в данном случае может составить в пределах 7 – 15 %.
  • Суммарная средняя экономия от внедрения АТП : для жилых зданий составляет от 20 до 40 % от общего объёма теплопотребления, а для объектов административного и производственного назначения от 25 до 60 %.

При анализе окупаемости необходимо сравнить данные по ожидаемой экономии со стоимостью оборудования АТП. Стоимость оборудования ТП в значительной степени зависит от технических условий присоединения.

При оценке окупаемости необходимо учитывать тот факт, что стоимость оборудования для автоматизации теплового пункта хотя и увеличивается с увеличением мощности, однако не пропорционально. Следовательно, наиболее актуальными с точки зрения сроков окупаемости являются более мощные ТП. При прочих равных условиях наиболее выгодным, т. е. наименее дорогостоящим является автоматизация объектов, присоединённых по зависимой схеме, работающих по повышенному температурному графику в условиях бездефицитного теплоснабжения. Кроме того, цены на узлы ввода, узлы учёта тепловой энергии, узлы присоединения систем отопления, вентиляции и ГВС не совсем корректно включать в расчёт окупаемости, поскольку они являются неотъемлемой частью любого теплопункта вне зависимости от того автоматизирован он или нет.

Типовые схемы

1. Одноступенчатая схема ГВС и отопление по независимой схеме

2. Одноступенчатая схема ГВС и отопление по зависимой схеме

3. Двуступенчатая схема ГВС и
отопление по зависимой схеме с управлением подмесом

 

Существует так же большое количество комбинаций частей представленных выше схем.

На вариантах 1-2 для движения теплоносителя в системе используется циркуляционный насос. Его параметры (напор и расход) подбираются под параметры системы, по ее сопротивлению и потере давления. Данный насос работает в течении всего отопительного периода с постоянным потреблением мощности на одной частоте вращения. Данные схемы являются наиболее надежными и распространенными на практике, но одновременно не экономичными с точки зрения потребления электрической энергии.

Отдельного внимания заслуживают схемы отопления, для которых движение теплоносителя в системе происходит за счет перепада давления теплосети, к которой присоединяется система отопления. Тепловой пункт по схеме 3 работает следующим образом: контроллер, в зависимости от температуры наружного воздуха, формирует уставку температуры частотному преобразователю, которую необходимо поддерживать на подаче в систему отопления. Далее частотный преобразователь при помощи встроенного ПИД-регулятора поддерживает эту температуру, снижая или увеличивая скорость вращения насоса, установленного на линии подмеса. Для данной схемы необходимо наличие обратного клапана на подаче из теплосети для обеспечения возможности работы насоса с частотой вращения близкой к номинальной.

К явным плюсам схемы 3 относительно остальных можно отнести следующие моменты:

  1. Отсутствие дорогостоящего двухходового или трехходового клапана, вместе с электроприводом.
  2. Дополнительная экономия электрической энергии при использовании частотного преобразователя, так как частота, с которой работает насос в процессе эксплуатации, меньше или равна номинальной.
  3. Увеличение ресурса насоса.
  4. Большая свобода в выборе мощности насоса.
  5. Меньшая зависимость от перепада давления воды на входе ТП.
  6. Стабилизация расхода теплоносителя в сети.
  7. Независимость давления в сети от температуры подающей воды.

Состав комплекта

  1. Шкаф КИПиА
  2. Комплект термосопротивлений (Темп. воды на входе/выходе, темп. наружного воздуха, темп. теплоносителя в систему отопления, темп. воды в систему ГВС)
  3. Комплект датчиков давления (давление воды в системе отопления, давление воды в системе ГВС)
  4. Возможна дополнительная комплектация датчиками расхода, давления воды на входе, тепловычислителем.

Для заказа комплекта автоматики для тепловых пунктов необходимо заполнить опросный лист

Обращаем Ваше внимание на то, что вся представленная на сайте информация, касающаяся комплектаций, технических характеристик, а также стоимости оборудования носит информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 (2) Гражданского кодекса Российской Федерации.

2009 - 2024 © ООО «Приборы контроля и Привод»
ООО «ОВЕН-ПЕРМЬ»
Нашли ошибку? Выделите её и нажмите Ctrl+Enter
Рейтинг[at]Mail.ru Создание сайта - Веб-студия Office59.ru
Корзина